Predicting mTOR Inhibitors with a Classifier Using Recursive Partitioning and Naïve Bayesian Approaches

نویسندگان

  • Ling Wang
  • Lei Chen
  • Zhihong Liu
  • Minghao Zheng
  • Qiong Gu
  • Jun Xu
چکیده

BACKGROUND Mammalian target of rapamycin (mTOR) is a central controller of cell growth, proliferation, metabolism, and angiogenesis. Thus, there is a great deal of interest in developing clinical drugs based on mTOR. In this paper, in silico models based on multi-scaffolds were developed to predict mTOR inhibitors or non-inhibitors. METHODS First 1,264 diverse compounds were collected and categorized as mTOR inhibitors and non-inhibitors. Two methods, recursive partitioning (RP) and naïve Bayesian (NB), were used to build combinatorial classification models of mTOR inhibitors versus non-inhibitors using physicochemical descriptors, fingerprints, and atom center fragments (ACFs). RESULTS A total of 253 models were constructed and the overall predictive accuracies of the best models were more than 90% for both the training set of 964 and the external test set of 300 diverse compounds. The scaffold hopping abilities of the best models were successfully evaluated through predicting 37 new recently published mTOR inhibitors. Compared with the best RP and Bayesian models, the classifier based on ACFs and Bayesian shows comparable or slightly better in performance and scaffold hopping abilities. A web server was developed based on the ACFs and Bayesian method (http://rcdd.sysu.edu.cn/mtor/). This web server can be used to predict whether a compound is an mTOR inhibitor or non-inhibitor online. CONCLUSION In silico models were constructed to predict mTOR inhibitors using recursive partitioning and naïve Bayesian methods, and a web server (mTOR Predictor) was also developed based on the best model results. Compound prediction or virtual screening can be carried out through our web server. Moreover, the favorable and unfavorable fragments for mTOR inhibitors obtained from Bayesian classifiers will be helpful for lead optimization or the design of new mTOR inhibitors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents

Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...

متن کامل

Using Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents

Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...

متن کامل

ارتقای کیفیت دسته‌بندی متون با استفاده از کمیته‌ دسته‌بند دو سطحی

Nowadays, the automated text classification has witnessed special importance due to the increasing availability of documents in digital form and ensuing need to organize them. Although this problem is in the Information Retrieval (IR) field, the dominant approach is based on machine learning techniques. Approaches based on classifier committees have shown a better performance than the others. I...

متن کامل

Predicting Implantation Outcome of In Vitro Fertilization and Intracytoplasmic Sperm Injection Using Data Mining Techniques

Objective The main purpose of this article is to choose the best predictive model for IVF/ICSI classification and to calculate the probability of IVF/ICSI success for each couple using Artificial intelligence. Also, we aimed to find the most effective factors for prediction of ART success in infertile couples. MaterialsAndMethods In this cross-sectional study, the data of 486 patients are colle...

متن کامل

ADME evaluation in drug discovery. 10. Predictions of P-glycoprotein inhibitors using recursive partitioning and naive Bayesian classification techniques.

P-Glycoprotein (P-gp), an efflux transporter, plays a crucial role in drug pharmacokinetic properties (ADME), and is critical for multidrug resistance (MDR) by mediating the active transport of anticancer drugs from the intracellular to the extracellular compartment. Here we reported an original database of 1273 molecules that are categorized into P-gp inhibitors and noninhibitors. The impact o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014